Table of Contents

1.	Exe	ecutive Summary	2
2.	Sco	ope of Report	3
3.	Sola	ar Sector Overview	3
4.	Sola	ar Plant Details	5
4.	1	Solar Irradiation and Weather Data	6
4.	2	Annual Energy Yield Assessment	7
4.	3	Electrical Infrastructure	8
4.	4	Module Mounting Infrastructure	9
5.	Оре	eration & Maintenance	9
6.	Cor	nclusion	9
List	of Ar	nnexures	9

1. Executive Summary

The 250kW_{AC} /363kW_{DC} rooftop Solar Power Plant at Bharat Seats Limited, Kharkhoda, Haryana, hereby mentioned as BSL, Kharkhoda is planned to be developed by Sunbeam Real Ventures Private Limited. The PPA was executed based on an initial assessment of $363kW_{DC}$. A brief overview of the project simulation summary is also projected below:

		Project: BSL KHARKHODA with Solargis					
		Variant: New simulation variant					
Vsyst V7.4.8 C1, Simulation date: //03/25 15:37 th V7.4.8		Solo Pow	er (India)				
		Project s	ummary ———				
Geographical Site	•	Situation		Project setting	6		
BSL Kharkhoda		Latitude	28.83 °N	Albedo	0.20		
India		Longitude	76.92 °E				
		Altitude	218 m				
		Time zone	UTC+5.5				
BSL Kharkhoda SolarGIS Monthly av	er. , period not spec Sy	unthetic System s	ummary				
Grid-Connected S	System	No 3D scene defir	•				
PV Field Orientat	ion	Near Shadings	, -	User's needs			
	orientations	No Shadings		Unlimited load (gri	d)		
Tilts/azimuths	3 / 42 °						
	3 / -138 °						
System information	on						
PV Array			Inverters				
Nb. of modules		620 units	Nb. of units		2 units		
Pnom total		363 kWp	Pnom total		250 kWac		
			Pnom ratio		1.451		
		— Results s	ummary ——				

• Solar Plant Developer and Ownership (Shareholders):

- i. Sunil Gadhoke
- ii. Viraj Gadhoke

• Location and Approach Roads

BSL is located at Kharkhoda in the state of Haryana. The geo-location of upcoming solar plant of $250 kW_{AC} / 363 kW_{DC}$ at Kharkhoda is 28.83° N, 76.92° E. The site proposed for the solar plant is approximately at a distance of

- 32 km from New Delhi,

- Total Solar Power Capacity to be Developed (MW_{AC}) 250kW_{AC}
- Solar Power Evacuation Plan (Refer ANNEXURE 2) Solar Power transmission and evacuation of each roof is done at the 800A spare feeder of the client Distribution Panel at 415V. The transmission of solar power generated will be through 2Rx3.5Cx240sqmm Al cable.

2. Scope of Report

• Introduce the concept of the solar plant

A Rooftop Solar Plant is a small to medium-scale photovoltaic system (PV system) designed under C&I segment, basically for captive power consumption. They operate in grid parallel mode with the ability to export surplus power to the local electricity distribution network. It provides security of power supply and resilience through self-generation with great cost benefits, particularly when the current and the future escalated grid tariff are accounted. It also assists in reducing carbon footprints and contributes to improved environmental impacts.

• A brief description of the solar plant being planned

250kW_{AC} solar plant is planned at the rooftop of BSL facility in Kharkhoda of Haryana, India. The power generated will be consumed by the facility. The PV technology installed here is mono-crystalline N-type TOPCON modules and 2 Sungrow inverters of 125kW are used to convert the DC power generated from the PV modules to the grid.

• Purpose of the DPR

Detailed project report is a complete document for investment decision-making, approval, planning. Detailed project report is based document for planning the solar plant and implementing the solar plant. In this DPR all details, starting from Renewable energy scenario in India, Solar irradiation available at site, Type of Roof and planning of Rooftop Solar Plant installed are included.

3. Solar Sector Overview

• PV Technologies

Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. A typical photovoltaic system employs solar panels, each comprising a number of solar cells, which generate electrical power. PV installations may be groundmounted, rooftop mounted or wall mounted. The mount may be fixed, or use a solar tracker to follow the sun across the sky. Solar PV has specific advantages as an energy source: once installed, its operation generates no pollution and no greenhouse gas emissions, it shows simple scalability in respect of power needs and silicon has large availability in the Earth's crust. Photovoltaic systems have long been used in specialized applications, and standalone and grid-connected PV systems have been in use since the 1990s. They were first massproduced in 2000, when German environmentalists and the Eurosolar organization got government funding for a ten thousand roof program. Advances in technology and increased manufacturing scale have in any case reduced the cost, increased the reliability, and increased the efficiency of photovoltaic installations Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity, have supported solar PV installations in many countries. More than 100 countries now use solar PV. The term "photovoltaic" comes from the Greek word (phos) meaning "light", and from "volt", the unit of electro-motive force, the volt, which in turn comes from the last name of the Italian physicist Alessandro Volta, inventor of the battery (electrochemical cell). The term "photo-voltaic" has been in use in English since 1849. Photovoltaics are best known as a method for generating electric power by using solar cells to convert energy from the sun into a flow of electrons by the photovoltaic effect. Solar cells produce direct current electricity from sunlight which can be used to power equipment or to recharge a battery. The first practical application of photovoltaics was to power orbiting satellites and other spacecraft, but today the majority of photovoltaic modules are used for grid connected power generation. In this case, an inverter is required to convert the DC to AC. Photovoltaic power generation employs solar cables connect modules (module cable), arrays (array cable), and sub-fields. Because of the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years.

Solar photovoltaic power generation has long been seen as a clean energy technology which draws upon the planet's most plentiful and widely distributed renewable energy source – the sun. Cells require protection from the environment and is usually packaged tightly in solar panels. Photovoltaic power capacity is measured as maximum power output under standardized test conditions (STC) in " W_P " (watts peak). The actual power output at a particular point in time may be less than or greater than this standardized, or "rated", value, depending on geographical location, time of day, weather conditions, and other factors. Solar photovoltaic array capacity factors are typically under 25%, which is lower than many other industrial sources of electricity.

• Overview of Available Technology

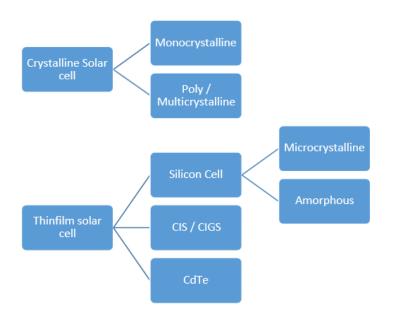
Solar energy can be converted into electricity using the following two broad technology options:

Photovoltaics (PV) is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of several cells containing a photovoltaic material. Materials presently used for photovoltaic include mono-crystalline silicon, multi-crystalline silicon, amorphous silicon, cadmium telluride, and copper indium selenide/sulphide. PV uses both direct and diffuse radiation for generation of electricity. Concentrated solar power (CSP) is the system that uses lenses or mirrors to concentrate a large area of sunlight, or solar thermal energy, onto a small area. Electrical power is produced when the concentrated light is converted to heat which drives a heat engine (usually a steam turbine) connected to an electrical power generator. CSP uses only direct radiation for generating electricity. As the Solar Plants has been allocated a 20MW Solar PV, this DPR will confine itself to the description of solar photovoltaic (PV) options.

• Solar PV Technology

Photovoltaic conversion is the direct conversion of sunlight into electricity with no intervening heat engine. A PV cell consists of two or more thin layers of semiconducting material, most commonly silicon. When the silicon is exposed to light, electrical charges are generated; and this can be conducted away by metal contacts as direct current. The electrical output from a single cell is small; so multiple cells are connected and encapsulated (usually glass covered) to form a module (also called a panel). PV generation technology is commercially proven and large multi-megawatt generation plants have been operating since the 1990s. Costs

associated with the technology are high, but the technology is well known and reliable. The major categories of solar photovoltaic technologies available are:


Mono-crystalline silicon cells: In these cells, the silicon has a single continuous crystal lattice structure with almost no defects or impurities. Their main advantage is high efficiency; though a complicated manufacturing process is required to produce mono-crystalline silicon, which results in higher costs than those of other technologies.

Multi-crystalline silicon cells: These cells are produced using numerous grains of monocrystalline silicon. The manufacturing process involves casting of silicon into ingots, which are subsequently cut into very thin wafers and assembled into complete cells. These are cheaper to produce because of a simpler manufacturing process.

Thin film: Extremely thin layers of photosensitive materials are deposited on a low-cost backing like glass, stainless steel or plastic. The selected materials are all strong light absorbers and only need to be about 1-micron thick, so materials costs are significantly reduced. The most common materials are amorphous silicon (a-Si), or the polycrystalline materials such as cadmium telluride (CdTe) and copper indium (gallium) (CIS or CIGS). Thin film cells trade-off lower efficiencies against a significantly lower cost of materials.

Concentrating PV: Concentrating the sunlight by optical devices like lenses or mirrors reduces the area of expensive cells or modules, and increases their efficiency. The most important benefit of this technology is the possibility to reach system efficiencies beyond 30%, which cannot be achieved by single junction 1-sun¹ photovoltaic technology.

1. 1-sun means testing conditions using irradiance of 1000 W/m^2

4. Solar Plant Details

Roof Size

The area of shadow free roof available for developing the solar power plant is approximately 3,936 m².

• Total power capacity (in AC) to be located within the solar plant $250 kW_{AC}$

• External Transmission infrastructure requirements, capacity already available, augmentation required up to target destinations: (Refer ANNEXURE-2)

Solar Power transmission and evacuation at the 800A spare feeder of the client Distribution Panel at 415V. The transmission of solar power generated will be through 2Rx3.5Cx240sqmm Al cable.

- Solar Radiation Resource Assessment station: The following data sensors shall be provided in the plant (in the module area) to monitor the following parameters:
 - Global Horizontal Irradiance Pyranometer
 - Collector plane Irradiance Pyranometer
 - Ambient temperature
 - Module temperature
- Drainage System:

Water based cleaning is done on the subject rooftop solar plant through a network of PVC plumbing pipes from the water tapping point to the PV module area.

 Telecommunication infrastructures: Communication System is planned to be installed to fetch the plant and its equipment performance data through Datalogger to monitor the plant remotely.

4.1 Solar Irradiation and Weather Data

Average monthly GHI from the nearest met station or other reliable sources

The average monthly GHI of Sohna was taken from SolarGIS meteorological database and the following monthly values of irradiance, ambient temperature and wind speed. It experiences an annual average rainfall of 636mm. The figure below shows the monthly solar irradiation and weather data at Manesar along with the monthly generation table P50 figures as simulated in PVSyst. The simulation table also specifies the estimated PR on monthly basis.

	GlobHor	DiffHor	T_Amb	WindVel	GlobInc	DifSInc	Alb_Inc	DifS_GI
	kWh/mª	kWh/m²	۰C	m/s	kWh/m²	kWh/m²	kWh/m²	ratio
January	92.0	52.8	13.10	2.3	92.2	38.81	0.011	0.000
February	122.4	56.9	16.50	2.7	122.9	35.07	0.018	0.000
March	175.8	75.4	22.20	2.1	176.2	41.50	0.023	0.000
April	193.3	88.6	28.70	2.4	193.6	46.90	0.026	0.000
May	194.5	105.3	32.50	2.6	194.6	58.52	0.025	0.000
June	163.6	100.3	33.00	2.6	163.5	60.36	0.021	0.000
July	142.9	96.5	30.10	2.3	142.8	64.88	0.018	0.000
August	152.3	92.8	28.90	2.8	152.3	58.25	0.021	0.000
September	154.6	77.9	28.10	2.3	154.8	47.64	0.021	0.000
October	147.9	73.9	25.30	2.3	148.2	44.87	0.021	0.000
November	111.1	59.6	20.20	1.8	111.5	39.56	0.016	0.000
December	97.0	52.4	15.09	2.0	97.4	36.01	0.014	0.000
Year	1747.4	932.4	24.51	2.3	1749.9	572.36	0.236	0.000

New simulation variant Weather data and incident energy

• Wind

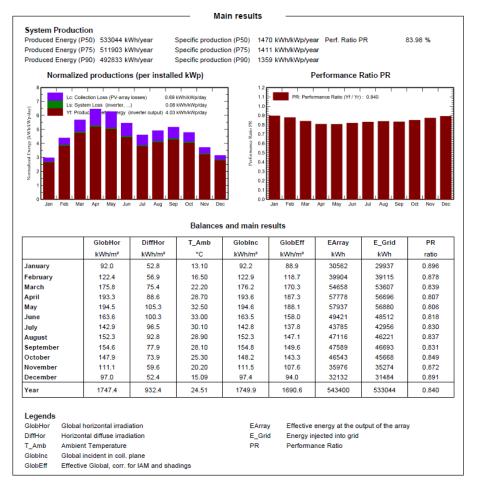
Wind speed influences air temperature. In other words, at higher wind speeds, the air temperature could decrease and so does the solar cell operating temperature. That means that wind can help a solar PV system perform more efficiently to harvest the positive influence of wind on solar cell operation temperature, one will install systems at heights elevated above the surface of the roof. This allows wind to flow between the surface of the solar panels and

the roof, reducing the operating temperature of the solar cells. This helps us ensure maximum module and solar PV system efficiency for the system.

Wind speed, including wind gusts, can have physical impacts on solar PV systems. For example, if a solar PV system was not installed with the correct mounting equipment (e.g. rails, attachments, fasteners, etc.) and there are high wind gusts, then the system could be damaged. If the damage is significant, the electrical operation of the system could be affected. In a worst-case scenario, the solar panels could be dislodged from the mounting equipment or the roof due to high winds. The system would lose electrical contact and be inoperable.

• Temperature

Local air temperature means the temperature of the air directly around the panels of the system. That can change how the solar PV system's voltage will function. Since solar cells – the physical material within a solar panel that converts sunlight into electricity – are under glass, they are well insulated. Thus, they have higher temperatures than the environment immediately around the panel. Temperature and voltage have an inverse relationship meaning the higher the temperature, the lower the operating voltage. Lower operating voltages cause lower module (and overall) system efficiency.


• Rain and Humidity

Humidity can slow efficiency in two ways. Tiny water droplets, or water vapour, can collect on solar panels (like beads of sweat) and reflect or refract sunlight away from solar cells. This reduces the amount of sunlight hitting them and producing electricity. Consistent hot, humid weather can degrade the solar panels themselves over their lifetime. This is true for both crystalline silicon cells and thin film modules. Rain can also affect in many ways like If rainy period in year is more than generation is also reduced after rain water droplets cause same effect as above.

4.2 Annual Energy Yield Assessment

• Simulation using reputed PV software

With the SolarGIS data, PVSyst simulation at 3° tilt and azimuth of 42° & -138°S was performed to assess the annual energy yield. A degradation of 1% was considered for a duration of one year from the time of installation. The simulation was performed on the basis of $363kW_{DC}$ and $250kW_{AC}$. The simulation result obtained is as shown in the Table given below. Annual Specific yield is 1359kWh/kWp/yr.

- Orientation and tilt angle of solar PV modules: 3° tilt and azimuth of 42° & -138°S
- Capacity Utilization Factor (CUF): 16%
- Annual Degradation: 1.6% for the 1st year and 0.4% thereafter

4.3 Electrical Infrastructure

• Electrical Interface Point

A grid-tied solar power system produces solar electricity that is fed directly into the utility grid, hence the term grid-tied, as the system is tied, literally, to the grid. Grid-connected or utility-interactive PV systems are designed to operate in parallel with and interconnected with the electric utility grid. The primary component in grid-connected PV systems is the inverter, or power conditioning unit (PCU).

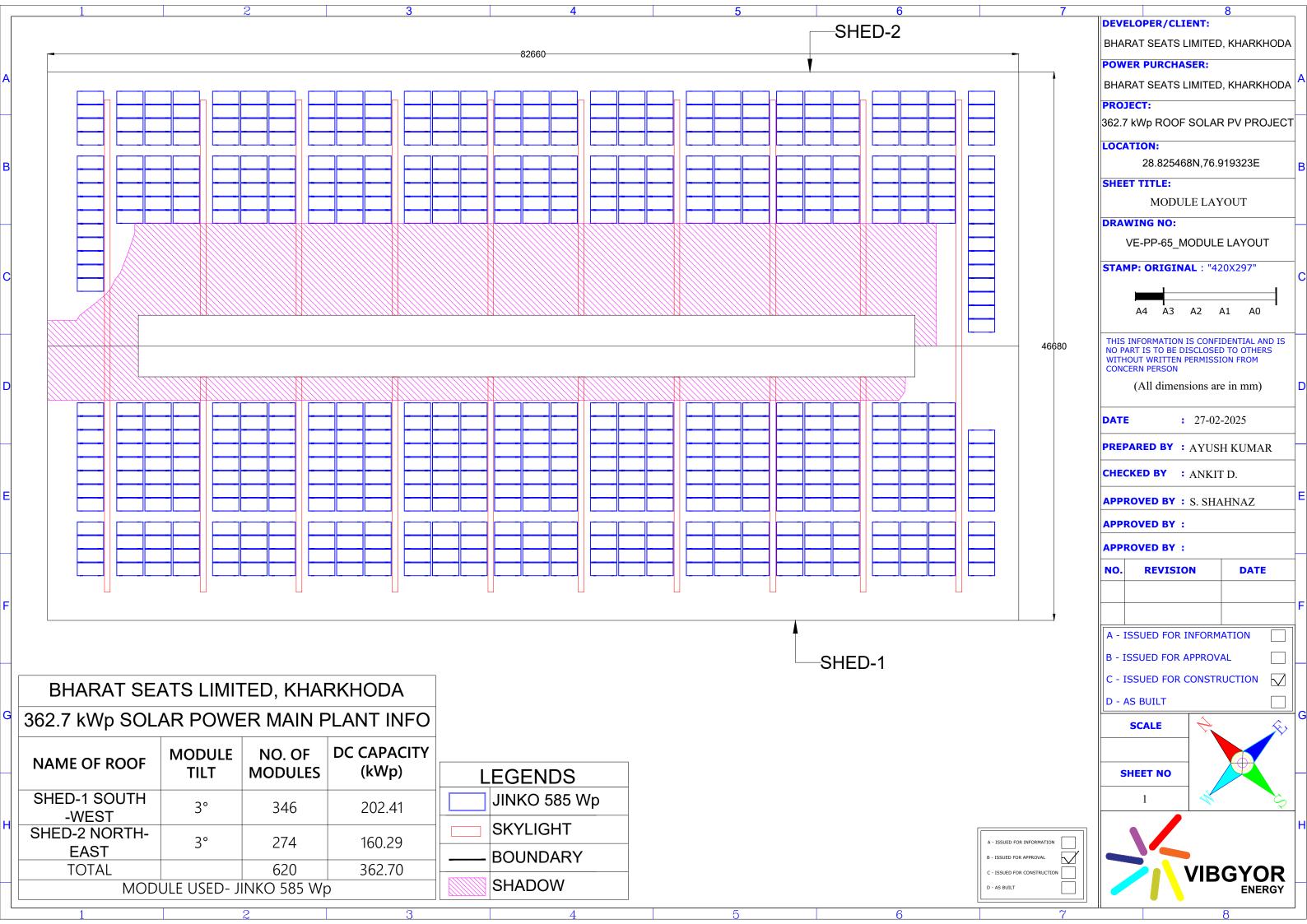
The PCU converts the DC power produced by the PV array into AC power consistent with the voltage and power quality requirements of the utility grid, and automatically stops supplying power to the grid when the utility grid is not energized. A bi-directional interface is made between the PV system AC output circuits and the electric utility network, typically at an on-site distribution panel or service entrance. This allows the AC power produced by the PV system to either supply on-site electrical loads, or to back feed the grid when the PV system output is greater than the on-site load demand.

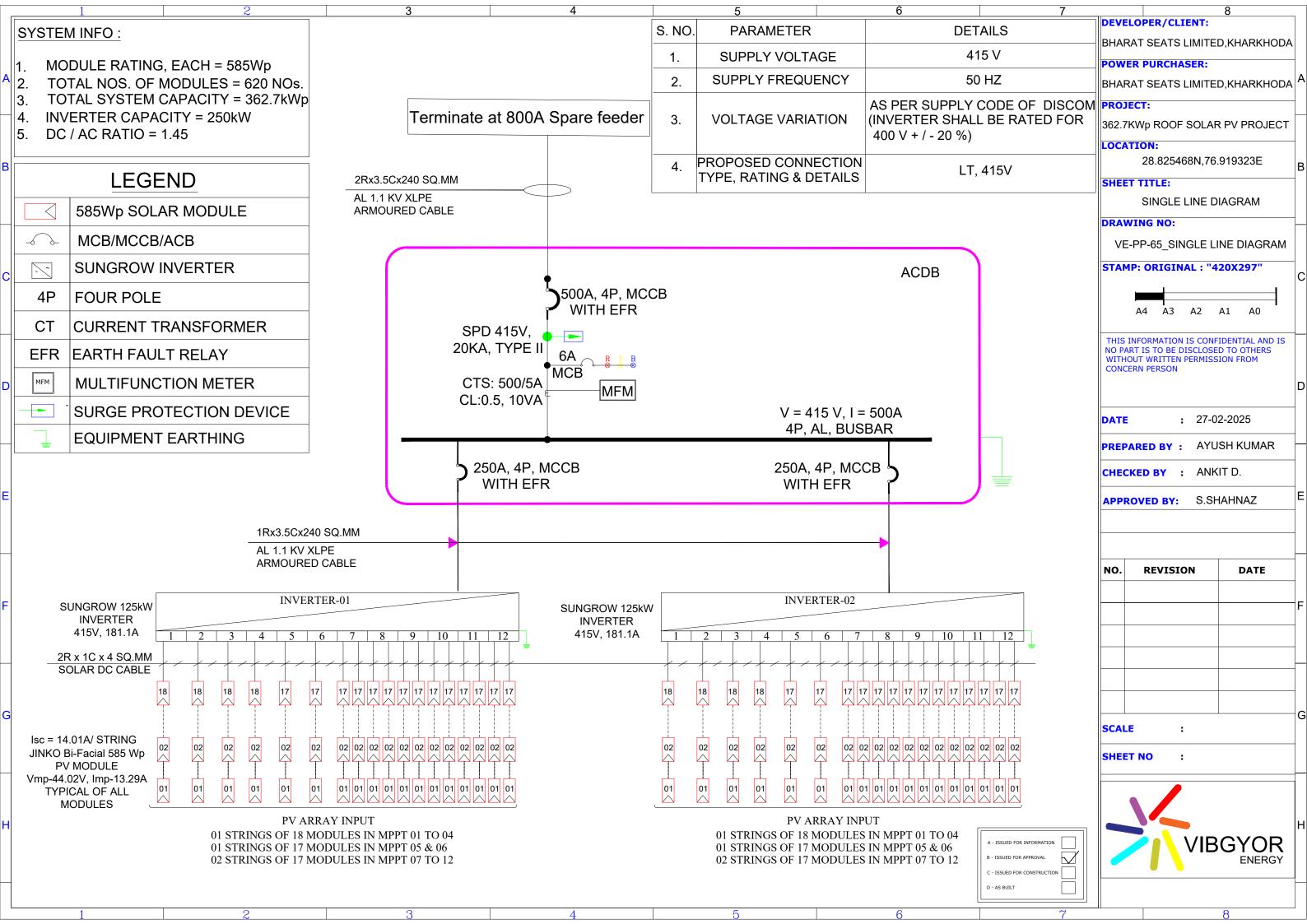
At night and during other periods when the electrical loads are greater than the PV system output, the balance of power required by the loads is received from the electric utility.

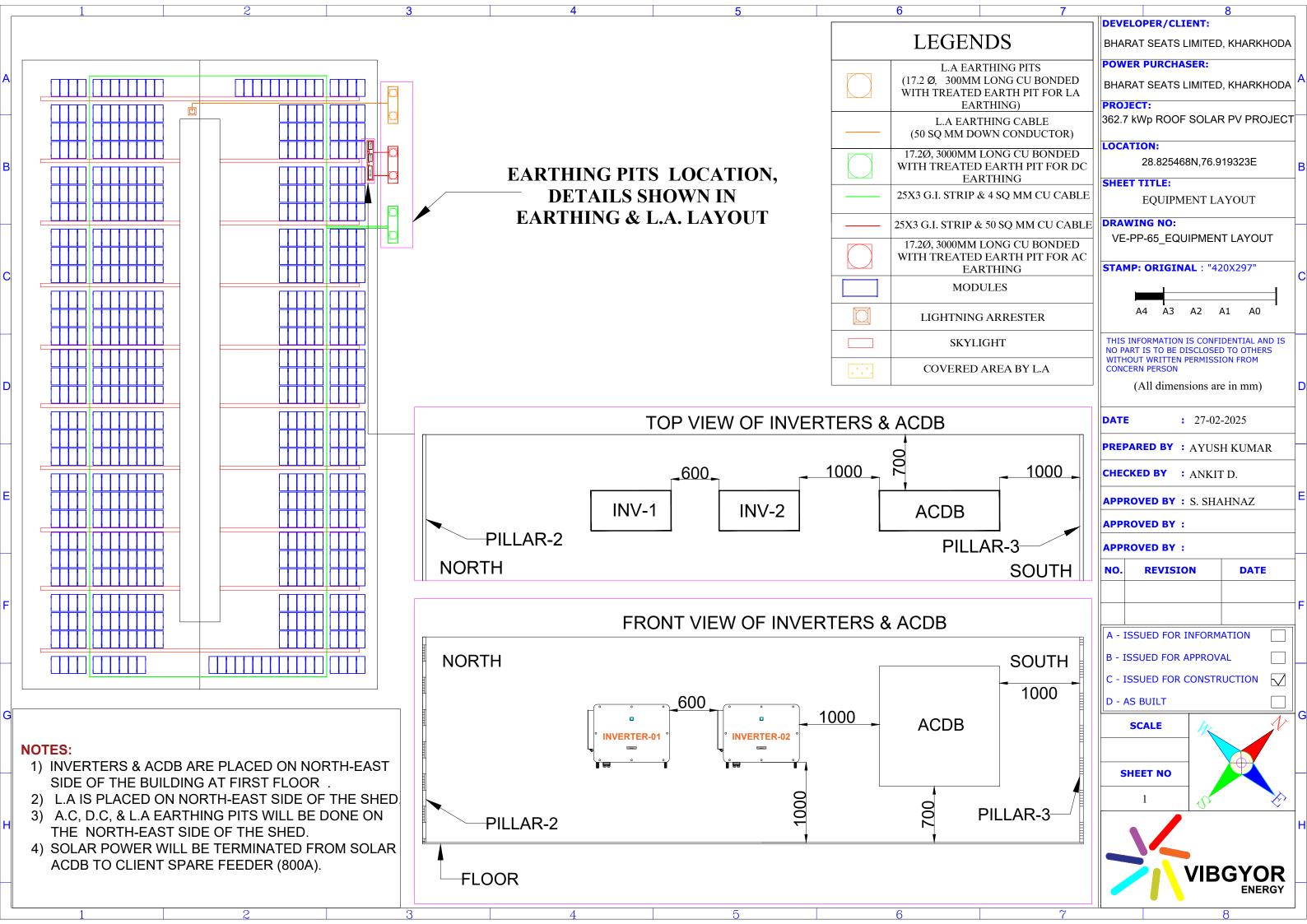
4.4 Module Mounting Infrastructure

Since the roof profile is that of Standing Seam type; clamp type structure is proposed for mounting of modules on the roof.

5. Operation & Maintenance


The operation and maintenance of the plant will be taken care by the Asset Management Team of the project developer. Water based module cleaning and preventive maintenance as per the suggested OEM is scheduled and performed to maintain the generation guarantee and plant performance mentioned in the PPA. An annual cleaning cycles of 32-36 is undertaken with 12 monthly, 4 quarterly & 1 annual schedules of preventive maintenance. In case of any breakdowns in between these cycles, it will be attended on immediate basis.


6. Conclusion


A generation guarantee of 4,43,534kWh/yr has been mutually agreed according to the PPA.

List of Annexures

- Annexure 1: General Lay Out Plan of Solar Power Plant
- Annexure 2: Power Evacuation System Diagram
- Annexure 3: Equipment Layout
- Annexure 4: PVSyst Report
- Annexure 5: Bill of Materials

PVsyst - Simulation report

Grid-Connected System

Project: BSL KHARKHODA with Solargis

Variant: New simulation variant No 3D scene defined, no shadings System power: 363 kWp BSL Kharkhoda - India

> Author Solo Power (India)

Variant: New simulation variant

Solo Power (India)

PVsyst V7.4.8 VC1, Simulation date: 12/03/25 15:37 with V7.4.8

		Proje	ct summary —		
Geographical	Site	Situation		Project settings	
BSL Kharkhoda	1	Latitude	28.83 °N	Albedo	0.20
India		Longitude	76.92 °E		
		Altitude	218 m		
		Time zone	UTC+5.5		
Weather data					
Weather data BSL Kharkhoda					
BSL Kharkhoda	ly aver. , period not spec.	- Synthetic			
BSL Kharkhoda	ly aver. , period not spec.		m summary —		
BSL Kharkhoda SolarGIS Month	<u> </u>	Syste	m summary —		
BSL Kharkhoda SolarGIS Monthl Grid-Connect	ed System	No 3D scene c	lefined, no shadings		
BSL Kharkhoda SolarGIS Month	ed System	Syste	lefined, no shadings	User's needs	
BSL Kharkhoda SolarGIS Monthl Grid-Connect	ed System	No 3D scene c	lefined, no shadings	User's needs Unlimited load (grid)	
BSL Kharkhoda SolarGIS Monthl Grid-Connect PV Field Oriel	ed System ntation	No 3D scene d	lefined, no shadings		

	Inverters	
620 units	Nb. of units	2 units
363 kWp	Pnom total	250 kWac
	Pnom ratio	1.451
		620 unitsNb. of units363 kWpPnom total

Results summary						
Produced Energy	533044 kWh/year	Specific production	1470 kWh/kWp/year Perf. Ratio PR	83.98 %		
		— Table of co	ontents			
Project and results s	ummary			2		
General parameters,	PV Array Characteristics,	System losses		3		
Main results				6		
Loss diagram				7		
Predef. graphs						
Single-line diagram				10		

PVsyst V7.4.8

VC1, Simulation date:

Project: BSL KHARKHODA with Solargis

Variant: New simulation variant

Solo Power (India)

	parameters —	
No 3D scene de	fined, no shadings	
Sheds configurati	on	Models used
No 3D scene define	ed	Transposition Perez
0		Diffuse Perez, Meteonorm
0		Circumsolar separate
Near Shadings No Shadings		User's needs Unlimited load (grid)
PV Array C	haracteristics –	
	Inverter	
Jinkosolar	Manufacturer	Sungro
JKM585N-72HL4-V	Model	SG125CX-F
	(Custom paramete	ers definition)
585 Wp	Unit Nom. Power	125 kWac
620 units	Number of inverters	2 units
363 kWp	Total power	250 kWac
		8 * MPPT 10% 0.8 unit
	Total power	96.6 kWac
14 string x 17 In series	.	
100 1111		180-1000 V
•	Pnom ratio (DC:AC)	1.44
195 A		
		2 * MPPT 6% 0.1 unit
•	Total power	14.6 kWac
2 string x 18 In series		
		180-1000 V
•	Phom ratio (DC:AC)	1.44
2077		
#1		
	Number of inverter-	2 * MPPT 6% 0.1 unit
•	rotar power	13.8 kWac
2 sumg x i i in series	Operating valtage	180-1000 V
	Operating voltage	180-1000 V 1.44
	Sheds configurati No 3D scene define Near Shadings No Shadings PV Array C Jinkosolar JKM585N-72HL4-V n) 585 Wp 620 units	Sheds configuration No 3D scene defined No 3D scene defined No 3D scene defined No Shadings No Shadings PV Array Charsteristics Inverter Jinkosolar Inverter JKM585N-72HL4-V Model It Nom. Power Unit Nom. Power JKM585N-72HL4-V Model 1 Custom parameter JKM585N-72HL4-V Model 1 Unit Nom. Power JKM585N-72HL4-V Model 1 Unit Nom. Power 363 kWp Total power #2 Operating voltage 14 string x 17 In series Operating voltage 195 A Phom ratio (DC:AC) #2 Operating voltage 19.49 kWp Total power 2 string x 18 In series Operating voltage 19.49 kWp Phom ratio (DC:AC) 700 V Z8 A #1 Number of inverters 19.89 kWp Total power 2 string x 17 In series Operating voltage 9.89 kWp Total power 2 string x 17 In series

Pmpp

U mpp

I mpp

Pnom ratio (DC:AC)

18.40 kWp

661 V 28 A

Variant: New simulation variant

Solo Power (India)

PVsyst V7.4.8

VC1, Simulation date: 12/03/25 15:37 with V7.4.8

	PV Array	Characteristics —	
Array #4 - Sub-array #4			
Orientation	#1		
Tilt/Azimuth	3/42 °		
Number of PV modules	204 units	Number of inverters	6 * MPPT 11% 0.7 unit
Nominal (STC)	119 kWp	Total power	81.7 kWac
Modules	12 string x 17 In series		
At operating cond. (50°C)		Operating voltage	180-1000 V
Pmpp	110 kWp	Pnom ratio (DC:AC)	1.46
U mpp	661 V		
l mpp	167 A		
Array #5 - Sub-array #5			
Drientation	#1		
Tilt/Azimuth	3/42 °		
Number of PV modules	108 units	Number of inverters	6 * MPPT 6% 0.3 unit
Nominal (STC)	63.2 kWp	Total power	43.3 kWac
Modules	6 string x 18 In series		
At operating cond. (50°C)		Operating voltage	180-1000 V
Pmpp	58.5 kWp	Pnom ratio (DC:AC)	1.46
U mpp	700 V		
l mpp	84 A		
Total PV power		Total inverter power	
Nominal (STC)	363 kWp	Total power	250 kWac
Total	620 modules	Number of inverters	2 units
Module area	1602 m²	Pnom ratio	1.45
Cell area	1474 m²	Power sharing defined	

Array losses

Array Soiling LossesLoss Fraction3.0 %		Thermal Loss factor Module temperature acco	•	LID - Light Induced Deg Loss Fraction	gradation 1.0 %
		Uc (const) Uv (wind)	20.0 W/m²K 0.0 W/m²K/m/s		
Module Quality Loss					
Loss Fraction	-0.3 %				
Module mismatch los	ses				
Array #1 - PV Array					
Loss Fraction		2.0 % at MPP			
Array #2 - Sub-array #2					
Loss Fraction		2.0 % at MPP			
Array #3 - Sub-array #3					
Loss Fraction		2.0 % at MPP			
Array #4 - Sub-array #4					
Loss Fraction		2.0 % at MPP			
Array #5 - Sub-array #5					
Loss Fraction		2.0 % at MPP			
IAM loss factor Incidence effect (IAM): Us	er defined profile				

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	1.000	1.000	1.000	0.989	0.971	0.931	0.737	0.000

Variant: New simulation variant

PVsyst V7.4.8 VC1, Simulation date: 12/03/25 15:37 with V7.4.8

Solo Power (India)

		DC wi	iring losses ————	
Global wiring resistance	10 mΩ			
Loss Fraction	1.5 % at STC			
Array #1 - PV Array			Array #2 - Sub-array #2	
Global array res.		55 mΩ	Global array res.	410 mΩ
Loss Fraction		1.5 % at STC	Loss Fraction	1.5 % at STC
Array #3 - Sub-array #	3		Array #4 - Sub-array #4	
Global array res.		387 mΩ	Global array res.	64 mΩ
Loss Fraction		1.5 % at STC	Loss Fraction	1.5 % at STC
Array #5 - Sub-array #	5			
Global array res.		137 mΩ		
Loss Fraction		1.5 % at STC		
		Syst	em losses	
Auxiliaries loss		-		
		AC w	iring losses ————	
Inv. output line up to in	njection point			
Inverter voltage		400 Vac tri		
Loss Fraction		0.58 % at STC		
Inverter: SG125CX-P2				
Wire section (2 Inv.)	Copper 2 x 3	x 120 mm²		

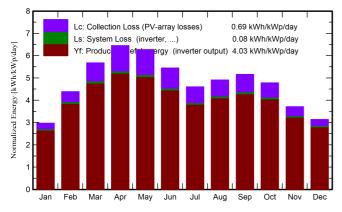
PVsyst V7.4.8

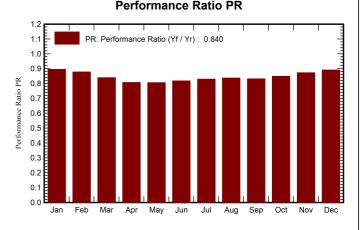
VC1, Simulation date: 12/03/25 15:37 with V7.4.8

Project: BSL KHARKHODA with Solargis

Variant: New simulation variant

Solo Power (India)


Main results


System Production

Produced Energy (P50) 533044 kWh/year Produced Energy (P75) 511903 kWh/year Produced Energy (P90) 492833 kWh/year Specific production (P50) Specific production (P75) Specific production (P90)

1470 kWh/kWp/year Perf. Ratio PR 1411 kWh/kWp/year 1359 kWh/kWp/year 83.98 %

Normalized productions (per installed kWp)

GlobHor DiffHor T_Amb GlobInc GlobEff EArray E_Grid PR kWh/m² kWh/m² °C kWh/m² kWh/m² kWh kWh ratio 52.8 January 92.0 13.10 92.2 88.9 30562 29937 0.896 39904 February 56.9 122.9 0.878 122.4 16.50 118.7 39115 March 175.8 75.4 22.20 176.2 170.3 54658 53607 0.839 April 193.3 88.6 28.70 193.6 187.3 57778 56696 0.807 May 105.3 194.6 57937 0.806 194.5 32.50 188.1 56880 June 163.5 49421 163.6 100.3 33.00 158.0 48512 0.818 July 142.9 96.5 30.10 142.8 137.8 43785 42956 0.830 August 152.3 92.8 28.90 152.3 147.1 47116 46221 0.837 September 28.10 47589 0.831 154.6 779 154.8 149.6 46693 October 147.9 73.9 25.30 148.2 143.3 46543 45668 0.849 November 111.1 59.6 20.20 111.5 107.6 35976 35274 0.872

97.4

1749.9

94.0

1690.6

32132

543400

31484

533044

0.891

0.840

Legends

December

Year

97.0

1747.4

52.4

932.4

Legenas			
GlobHor	Global horizontal irradiation	EArray	Effective energy at the output of the array
DiffHor	Horizontal diffuse irradiation	E_Grid	Energy injected into grid
T_Amb	Ambient Temperature	PR	Performance Ratio
GlobInc	Global incident in coll. plane		
GlobEff	Effective Global, corr. for IAM and shadings		

15.09

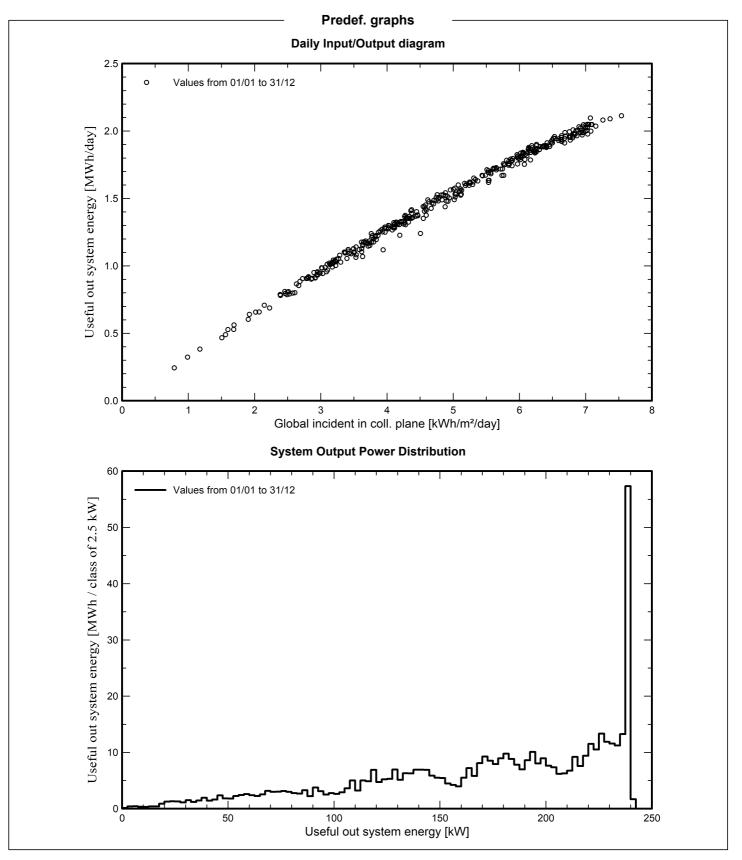
24.51

Balances and main results

Variant: New simulation variant

Solo Power (India)

PVsyst V7.4.8 VC1, Simulation date: 12/03/25 15:37 with V7.4.8


Loss diagram				
1747 kWh/m²		Global horizontal irradiation		
	+0.1%	Global incident in coll. plane		
	-0.40%	IAM factor on global		
	-3.00%	Soiling loss factor		
1691 kWh/m² * 1602 m	² coll.	Effective irradiation on collectors		
efficiency at STC = 22.	66%	PV conversion		
613513 kWh		Array nominal energy (at STC effic.)		
	+0.24%	PV loss due to irradiance level		
	-7.36%	PV loss due to temperature		
	(+0.30%	Module quality loss		
	9-1.00%	LID - Light induced degradation		
	9 -2.04%	Mismatch loss, modules and strings		
	-0.91%	Ohmic wiring loss		
549192 kWh		Array virtual energy at MPP		
	-1.63%	Inverter Loss during operation (efficiency)		
	-1.07%	Inverter Loss over nominal inv. power		
	\ 0.00%	Inverter Loss due to max. input current		
	∀ 0.00%	Inverter Loss over nominal inv. voltage		
	♦ 0.00%	Inverter Loss due to power threshold		
	∀ 0.00%	Inverter Loss due to voltage threshold		
	┝ -0.01%	Night consumption		
534433 kWh		Available Energy at Inverter Output		
	♦ 0.00%	Auxiliaries (fans, other)		
	→-0.26%	AC ohmic loss		
533044 kWh		Energy injected into grid		

Variant: New simulation variant

Solo Power (India)

PVsyst V7.4.8 VC1, Simulation date: 12/03/25 15:37 with V7.4.8

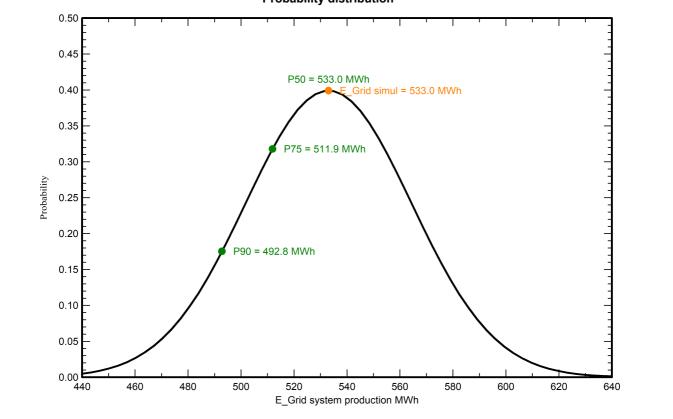
Variant: New simulation variant

Solo Power (India)

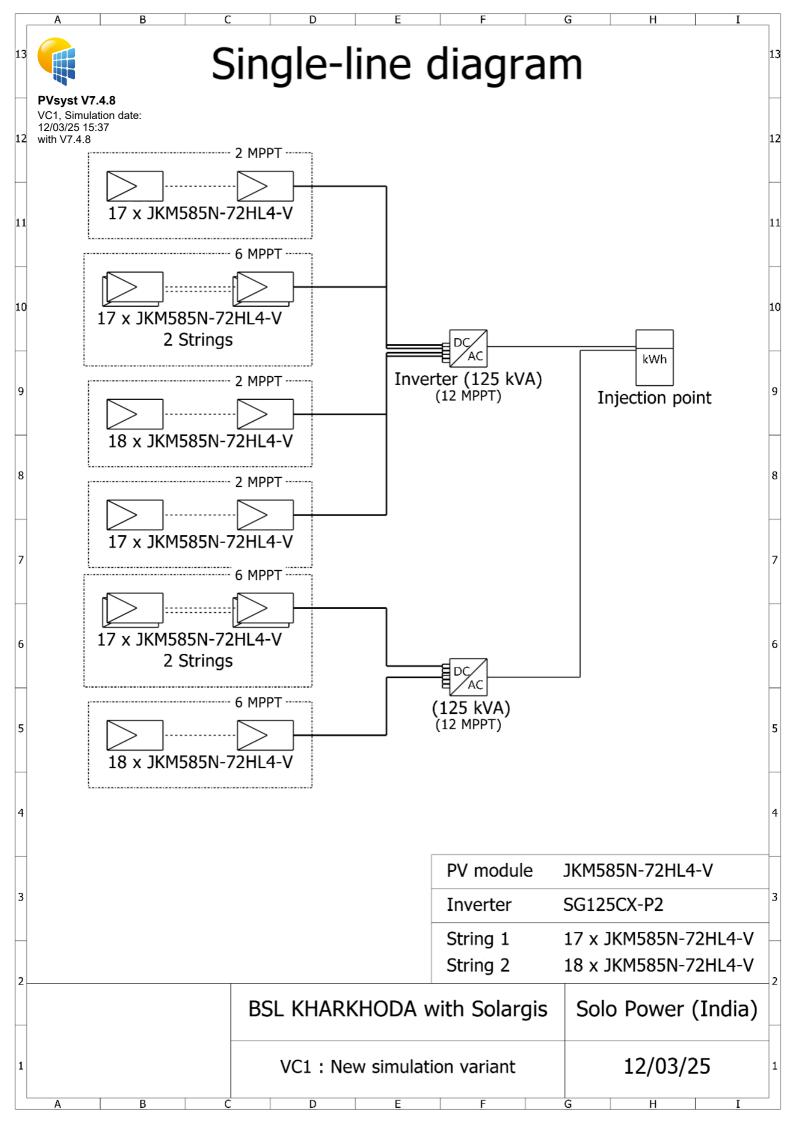
PVsyst V7.4.8 VC1, Simulation date: 12/03/25 15:37 with V7.4.8

Weather data

P50 - P90 evaluation Simulati ly aver. , period not spec. PV modul


Source	SolarGIS Monthly aver.	period not spec.
Kind	Ν	/lonthly averages
Synthetic	c - Multi-year average	
Year-to-y	/ear variability(Variance)	5.6 %
Specifie	d Deviation	
Climate	change	0.0 %

Global variability (weather data + system	m)
Variability (Quadratic sum)	5.9 %


Simulation and parameters uncertaintiesPV module modelling/parameters1.0 %Inverter efficiency uncertainty0.5 %Soiling and mismatch uncertainties1.0 %Degradation uncertainty1.0 %

Annual production probability

Variability	31.4 MWh
P50	533.0 MWh
P75	511.9 MWh
P90	492.8 MWh

Probability distribution

BILL OF MATERIAL

Site Name : Bharat Seats Limited, Kharkhoda

362.7 kWp Solar Photovoltaic Power Plant							
EPC Developer: - Sunbeam Real Venture Pvt Ltd. 25-04-2025							
	Prepared By : Ayush Kumar				ar		
Clien	t : Bharat Seats Limited	, Kharkhoda	Checked By : Ankit D.				
Sr. No.	Components on Supply	Technical Specification	MAKE	UOM	Quantity		
1	Solar PV Module	585 Wp	Jinko	NOS.	620		
2	Inverter	125 KW	Sungrow	NOS.	2		
3	RMS		Standard	NOS.	1		
4	ACDB	2-in(1R-3.5C-240 Sq.mm AL with 250A 4P MCCB) and 1 out(2R-3.5C-240 Sq.mm AL with 500A 4P MCCB) with AL BUSBAR, IP5X at 415V	Standard	NOS.	1		
5	MFM	CT Ratio 500/5A, 0.5 Class in ACDB	Secure	NOS.	1		
6	DC Cable	DC Solar cable 4 Sq.mm. (Single core,XLPO-UV stabilized) as per TUV 2Pfg 1169/08 2007, CE	Seichem/Polycab	Meter	6700		
7	AC Cable	Al-3.5C-XLPE(1.1 kV), 240 Sq.mm. ,Class 5 Multistrand, Armoured	Seichem/Polycab	Meter	360		
8	Earthing Cable	4 Sq. mm 1C Cu	Seichem/Polycab	Meter	280		
•	Editining Cable	50 sq.mm 1C cu	Seichem/Polycab	Meter	15		
9	Earthing Strip	25 x 3 mm GI FLAT for DC & AC	Seichem/Polycab	Meter	400		
10	Earthing Electrode	17.2 mm dia and 3 meter long CU Coated(250 Microns) Steel Rod Earthing Electrode with 22.5 kg Earthing Backfill Compound Chemical, with Pre Cast Chamber pit cover,Electrode	JMV/VNT/Standard	NOS.	4		
11	Lightning Arresters	Level III with 95 m radius With 1C 50 Sq.mm Cu Down Conductor, With 3m Mast Height with 17.2 mm dia and 3 meter long CU Bonded Earthing Electrode, 1 set with 2 Electrode	Onay Plus	Set	1		
		50 Sqmm down conductor	Standard	Meter	50		
12	Safety Life Line		Standard	Meter	350		
13	Walkway	300mm wide GI	Standard	Meter	350		
14	Mesh for Skylight	20X0.5 Meter	Standard	NOS.	20		
15	Module mounting Structure	Flush Mount Structure_Standing seam with clamps	Standard	kWp	362.7		
		40mmx25mm Perforated type	Standard	Meter	160		
16 DC Cable Tray with Cover	70mmx40mm Perforated type	Standard	Meter	125			
		130mmx40mm Perforated type	Standard	Meter	35		
17	AC Cable Tray	200mmx75mm Ladder type	Standard	Meter	160		
18 19	MC4 Connector Sensor	Pyranometer, Ambient Temperature & Module Temperature	Standard Standard	Set NOS.	260		
20	Fire Protection	Sensors ABC Type		Set	2		
		RS 485 cable	Standard	Meter	400		
21	Communication Cable	HDPE Conduit Pipe 40 mm Dia	Standard	Meter	400		
	22 Module Cleaning System	1 " UPVC Pipe	Standard	Meter	70		
		0.75" UPVC Pipe	Standard	Meter	230		
22		Flexible Rubber Pipe	Standard	Meter	30		
		Ball Valve	Standard	Nos.	15		
		Gate Valve	Standard	Nos.	5		
		Motor	Standard	Nos.	1		
23	Others	In Line Connectors (Pin & Ring type lugs), Insulators, Ferrules & Cable Tags, Silicon Sealant, Safety Tags, Electrical Tapes, PVC Clips, Anticorrosive Paste, Cable ties, Stainless Steel Screws, Nuts, Lugs, Bolts etc.	As Requirement				
This Bill Of Material can be change as per Site Condition							